
Iranian Journal of Mathematical Sciences and Informatics
Vol. 15, No. 1 (2020), pp 135-159
DOI: 10.21859/IJMSI.15.1.135

The Dynamical Analysis of a Delayed prey-Predator Model
with a Refuge-Stage Structure Prey Population

Raid K. Najia, Salam J. Majeeda,b

aDepartment of Mathematics, College of Science, University of Baghdad, Iraq.
bDepartment of Mathematics, College of Computer Science and Mathematics,

University of Thi-Qar, Iraq.

E-mail: rknaji@gmail.com
E-mail: sm.salammajeed@yahoo.com

Abstract. A mathematical model describing the dynamics of a delayed
stage structure prey-predator system with prey refuge is considered. The
existence, uniqueness and boundedness of the solution are discussed. All
the feasible equilibrium points are determined. The stability analysis of
them are investigated. By employing the time delay as the bifurcation
parameter, we observed the existence of Hopf bifurcation at the posi-
tive equilibrium. The stability and direction of the Hopf bifurcation are
determined by utilizing the normal form method and the center mani-
fold reduction. Numerical simulations are given to support the analytic
results.

Keywords: Delayed Prey-Predator System, Stage-Structure, Refuge, Stabil-
ity, Hopf Bifurcation.

2010 Mathematics Subject Classification: 92D25.

∗Corresponding Author

Received 17 July 2017; Accepted 28 April 2018
©2020 Academic Center for Education, Culture and Research TMU

135



136 Raid K. Naji, Salam J. Majeed

1. Introduction

During the last few decades, the prey - predator models have been received
great interest in population dynamics, [1-6]. The dynamics of the prey - preda-
tor models descript the relationships between species and the outer environment
and the connections between different species. These models become famous
from the traditional work given by Lotka [7] and Volterra [8]. Although the
traditional Lotka-Volterra model serves as a basis for many models used today
to analyze population dynamics, it is unfit cannot be neglected. Because it
has an unavoidable limitations to describe many realistic phenomena in biol-
ogy, moreover it is assumed that each individual prey admits the same ability
to be attacked by the predators. This assumption is obviously unrealistic for
many animals because there are many of them have two stages, immature
and mature. So, in order to describe the real biological interactions between
the individuals of prey-predator systems, some mathematical researchers pro-
posed the stage-structured prey-predator models, see for example [9-16] and
the references therein. In general, the time delays in mathematical models of
population dynamics are due to maturation time, gestation time, capturing
time or some other reasons and since in most applications of delay differential
equations in biology, the need for incorporating time delays is often due to the
existence of some stage structures. So, some works of stage-structure prey -
predator models with time delay have been provided in the literatures [17-26].
Bandyopadhyaya and Banerjee in [20], Yuanyuan and Changming in [21], and
Wang et al in [22] proposed three mathematical models of stage-structure prey-
predator involving time delay for gestation, which based on the fact that the
reproduction of predator will not be instantaneous after eating the prey but
mediated by some time delay needed for gestation of predator, in their models,
they supposed that the predator feeds on the immature prey only or mature
prey only, and ignored the predation of the other prey. In nature, the predator
feeds on both of the prey, mature and immature. From this viewpoint and
since the addition of refugees can be controlled on the prey extinction where
it will be out of sight of predators, Naji and Majeed in [16] was proposed the
following mathematical model:

ẋ = ry − δ1x
2 − d1x− βx− γ1(1−m)xz,

ẏ = βx− δ2y
2 − d2y − γ2(1−m)yz,

ż = e1γ1(1−m)xz + e2γ2(1−m)yz − δ3z
2 − d3z,

where x(T) represents the population size of the immature prey at time T;
y(T) represents the population size of the mature prey at time T, while z(T)
denotes to the population size of the predator species at time T. Clearly the
above model does not considers the effect of delay on the gestation of predator
further than that it consider the predation from both the prey and the existence
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of refuge as a defenses factor against the predation. In this paper the Naji and
Majeed model is modified so that it involves the delay for the gestation of the
predator, consequently the above model can be written as follows:

ẋ = ry − δ1x
2 − d1x− βx− γ1(1−m)xz,

ẏ = βx− δ2y
2 − d2y − γ2(1−m)yz,

ż = e1γ1(1−m)x(T − τ)z(T − τ) + e2γ2(1−m)y(T − τ)z(T − τ)

− δ3z
2 − d3z.

Now, in order to simplify the analysis of the proposed model, the above model
takes the following dimensionless form:

ẏ1 = a1y2 − a2y
2
1 − a3y1 − a4y1y3,

ẏ2 = b1y1 − b2y
2
2 − y2 − b3y2y3, (1.1)

ẏ3 = y1(t− τ)y3(t− τ) + y2(t− τ)y3(t− τ)− y23 − b4y3,

with the dimensionless variables and parameters given by
y1 = e1γ1(1−m)

d2
x, y2 = e2γ2(1−m)

d2
y, y3 = δ3

d2
z, t = d2T

a1 = e1γ1r
e2γ2d2

, a2 = δ1
e1γ1(1−m) , a3 = d1+β

d2
, a4 = γ1(1−m)

δ3

b1 = e2γ2β
e1γ1d2

, b2 = δ2
e2γ2(1−m) , b3 = γ2(1−m)

δ3
, b4 = d3

d2
.

2. Positiveness and boundedness

In this section, we study the positivity and boundedness of the solutions of
system (1.1).

Theorem 2.1. All solutions of system (1.1) are positive for t ≥ 0.

Proof. From the first equation of system (1.1), we have for t ≥ 0

ẏ1 ≥ −y1(a2y1 + a4y3 + a3)

Straight forward computation gives that
y1 ≥ y1(0)exp{−

∫ t

0
(a2y1(s) + a4y3(s) + a3)ds} > 0.

Since y1(0) > 0, we get y1(t) > 0 for all t ≥ 0. Similarly we can see that
y2(t) > 0, y3(t) > 0 for all t ≥ 0. Hence the proof of theorem is complete. □

In order to prove the boundedness of system (1.1), we need to recall the
following Lemma from[11].

Lemma 2.2. :Consider the following equations
ẋ(t) = ax(t− τ)− bx(t)− cx2(t),

where a, b, c, τ > 0,x(t) > 0 for t ∈ [−τ, 0].
(i): if a > b, then limt→+∞ x(t) = (a− b)/c.
(ii): if a < b, then limt→+∞ x(t) = 0.
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Theorem 2.3. All solutions of system (1.1) with positive initial values are
bounded.

Proof. Given any solution (y1(t), y2(t), y3(t)) of system (1.1) with the initial
condition, y1(0) > 0, y2(0) > 0, y3(0) > 0 . Then from the first two equations
of system (1.1) we obtain

d
dt (y1 + y2) + σ1(y1 + y2) ≤ a1y2(1− y2

a1
b2

) + b1y1(1− y1
b1
a2

) ≤ σ2,

where σ1 = min{1, a3} and σ2 =
a2
1

4b2
+

b21
4a2

. Moreover by using Gronwall lemma
[18], we get that

0 < y1(t) + y2(t) ≤ (y1(0) + y2(0))e
−σ1t + σ2

σ1
(1− eσ1t).

Therefore, for t → ∞ we have 0 < y1(t) + y2(t) < σ2

σ1
:= M∗. Thus, there

exists a constant T1 > 0 and ,M∗
1 > M∗ such that for any t > T1 we have

y1(t) ≤ M∗
1 and y2(t) ≤ M∗

1 . In addition, from third equation of system (1.1)
with t > T1 + τ it is easy to verify that

dy3

dt ≤ M∗
1 y3(t− τ)− y23 − b4y3.

Then by using lemma(2.2), it follows that as t → ∞ we have
y3 = 0 or y3 ≤ M∗

1 − b4 := M∗
2 .

Hence, all solutions of system (1.1), which initiate in R3
+are bounded and there-

fore we have finished the proof. □

3. Local stability analysis and Hopf bifurcation.

In this section, we will study the local stability and Hopf bifurcation of
system (1.1). It is known that the location and number of equilibrium points
do not change with time delay. Accordingly, from [16] system (1.1) have two
boundary equilibrium points, say E0 = (0, 0, 0) and E1 = (ỹ1, ỹ2, 0), with one
interior equilibrium point given by E2 = (y∗1 , y

∗
2 , y

∗
3), where

ỹ1 =
1

b1
(b2ỹ2

2 + ỹ2) (3.1)

while ỹ2 is a positive root of

A1y
3
2 +A2y

2
2 +A3y2 +A4 = 0, (3.2)

here, A1 =
a2b

2
2

b21
, A2 = 2a2b2

b21
, A3 = a2+a3b1b2

b21
and A4 = a3−a1b1

b1
.

And

y∗1 =
[(b2 + b3)y

∗
2 + (1− b3b4)]y

∗
2

b1 − b3y∗2
, y∗3 = y∗1 + y∗2 − b4, (3.3)

while y∗2 is a positive root of

B1y
3
2 +B2y

2
2 +B3y2 +B4 = 0, (3.4)
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where,

B1 = a2(b2 + b3)
2 + a4b2(b2 + b3) > 0,

B2 = [2a2(b2 + b3) + 2a4b2 + a4b3](1− b3b4)− [a3b2b3 + b23(a3 + a1)],

B3 = 2a1b1b3 + (a2 + a4)(1− b3b4)
2 + b1(a3 − a4b4)(b2 + b3)

+ [b1a4 − b3(a3 − a4b4)])(1− b3b4),

B4 = b1[a3 − a1b1 − a3b3b4 − a4b4(1− b3b4)].

Clearly, the equilibrium point E0 always exists, while E1 exists uniquely in the
interior of y1y2-plane provided that

a3 < a1b1, (3.5)

However the interior equilibrium point E2 exists uniquely under the following
set of conditions

B4 < 0 with (B2 > 0 or B3 < 0), (3.6)
y∗1 + y∗2 > b4, (3.7)

b3b4 − 1

b2 + b3
< y∗2 <

b1
b3

or
b1
b3

< y∗2 <
b3b4 − 1

b2 + b3
. (3.8)

It is well known that, the variational matrix of system (1.1) at any equilibrium
point Ě = (y̌1, y̌2, y̌3), takes the form

J(Ě) =

−2a2y̌1 − a3 − a4y̌3 a1 −a4y̌1
b1 −2b2y̌2 − 1− b3y̌3 −b3y̌2

y̌3e
−λτ y̌3e

−λτ (y̌1 + y̌2)e
−λτ − 2y̌3 − b4


(3.9)

while its associated characteristic equation takes the form

P (λ) +Q(λ)e−λτ = 0 (3.10)

here P (λ) and Q(λ) are polynomials of λ. Accordingly the local stability prop-
erties of system (1.1) at all feasible equilibrium points are determined by the
roots of the above equation for all τ ≥ 0.

For the equilibrium point E0, Eq.(3.9) reduces to

J(E0) =

−a3 a1 0

b1 −1 0

0 0 −b4

 . (3.11)

Then the associated characteristic equation of the variational matrix (3.11) is
given by

(λ+ b4)[λ
2 + (a3 + 1)λ+ a3 − a1b1] = 0. (3.12)

Clearly, all roots of (3.12) have negative real parts if and only if the following
condition holds:

a3 > a1b1. (3.13)
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Therefore, E0 is locally asymptotically stable for any τ ≥ 0 provided that con-
dition (3.13) holds.

For the equilibrium point E1, the variational matrix Eq.(3.9) reduces to

J(E1) =

−2a2ỹ1 − a3 a1 −a4ỹ1
b1 −2b2ỹ2 − 1 −b3ỹ2
0 0 (ỹ1 + ỹ2)e

−λτ − b4

 = (aij), (3.14)

while its characteristic equation is given by

[λ+ b4 − (ỹ1 + ỹ2)e
−λτ ][λ2 − (a11 + a22)λ+ a11a22 − a12a21] = 0. (3.15)

Obviously, all roots of the equation

λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0,

have negative real parts for any τ ≥ 0 if the following condition holds

(2a2ỹ1 + a3)(2b2ỹ2 + 1) > a1b1, (3.16)

while all other roots of Eq.(3.15 ) are given by the roots of

λ+ b4 − (ỹ1 + ỹ2)e
−λτ = 0. (3.17)

Obviously, for τ = 0, equation (3.17) has only one root given by λ = (ỹ1 +

ỹ2)− b4, which is negative under the condition

ỹ1 + ỹ2 < b4 (3.18)

Consequently, for τ = 0, E1 is locally asymptotically stable under the condi-
tions (3.16) and (3.18). This stability may be lost, as τ increases, if Eq.(3.17)
has a pair of purely imaginary roots, that cross the imaginary axis.

Now suppose that λ = iw(τ) is a root of Eq. (3.17), where w(τ) is real posi-
tive, then by substituting iw into Eq. (3.17) and separating real and imaginary
parts, we obtain

(ỹ1 + ỹ2) coswτ = b4,

(ỹ1 + ỹ2) sinwτ = −w.
(3.19)

Squaring each equation and then adding them, we get that

w = ∓
√

(ỹ1 + ỹ2)2 − b24

Note that, under the condition (3.18), w(τ) with τ > 0 cannot be real, which
contradicts with the assumption. Therefore, the characteristic Eq. (3.17) can’t
have purely imaginary root, and E1 is locally asymptotically stable for all τ ≥ 0

if the conditions (3.16) and (3.18)hold. We can summarize the above discussion
by the following theorem on the local stability of the boundary equilibrium
points.
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Theorem 3.1. (i): The equilibrium E0 is locally asymptotically stable
for all τ ≥ 0 provided that condition (3.13) holds.

(ii): If the equilibrium point E1 exists then it is locally asymptotically
stable for all τ ≥ 0 provided that conditions (3.16) and (3.18) hold.

Now for the interior equilibrium point E2, the variational matrix given by
Eq.(3.9) reduces to

J(E2) = (cij)3×3 =

 −(2a2y
∗
1 + a4y

∗
3 + a3) a1 −a4y

∗
1

b1 −(2b2y
∗
2 + b3y

∗
3 + 1) −b3y

∗
2

R1e
−λτ R1e

−λτ R2e
−λτ +R3


(3.20)

where, R1 = y∗3 , R2 = (y∗1 + y∗2) > 0 , R3 = −(y∗1 + y∗2 + y∗3) < 0.

However , the associated characteristic equation of (3.20) is given by

λ3 +M1λ
2 +M2λ+M3 + (N1λ

2 +N2λ+N3)e
−λτ = 0, (3.21)

with
M1 = −(c11 + c22 +R3) > 0,

M2 = c11c22 − c12c21 +R3(c11 + c22), M3 = R3(c12c21 − c11c22),

N1 = −R2 < 0, N2 = R2(c11 + c22)−R1(c13 + c23),

N3 = R2(c12c21 − c11c22) +R1[(c11 − c12)c23 + (c22 − c21)c13].

Now , when τ = 0 , Eq.(3.21) becomes

λ3 + (M1 +N1)λ
2 + (M2 +N2)λ+M3 +N3 = 0 (3.22)

From [16] Eq.(3.22) has three roote with negative real parts provided the fol-
lowing conditions are satisfied

(2a2y
∗
1 + a4y

∗
3 + a3)(2b2y

∗
2 + b3y

∗
3 + 1) > a1b1, (3.23)

y∗3 > a1 and y∗3 > b1, (3.24)
Thus , for τ = 0 the equilibrium point E2 is locally asymptotically stable
provided that the conditions (3.23) and (3.24) are satisfied . On the other
hand for τ > 0 straightforward computation shows that Eq.(3.21) has at least
a pair of purely imaginary roots represented by λ = ±iω(ω > 0) if in addition
to conditions (3.23)-(3.24) the following condition holds

N3 > M3 (3.25)

By substituting λ = iω in to Eq(3.21) we obtain that

−iω3 −M1ω
2 + iM2ω +M3 + (−N1ω

2 + iN2ω +N3)(cosωτ − i sinωτ) = 0.

Separating the real and imaginary parts, we get

(N3 −N1ω
2) cosωτ +N2ω sinωτ = M1ω

2 −M3,

N2ω cosωτ − (N3 −N1ω
2) sinωτ = ω3 −M2ω, (3.26)
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Squaring these two equations and then adding them, we get

ω6 + h1ω
4 + h2ω

2 + h3 = 0 (3.27)

where

h1 = M2
1 −N2

1 − 2M2 = R2
1 + 2R1R2 + c211 + c222 + 2c12c21 > 0,

h2 = M2
2 −N2

2 − 2M1M3 + 2N1N3,

h3 = M2
3 −N2

3 = (M3 +N3)(M3 −N3).

Obviously due to conditions (3.23) - (3.25), we have h3 < 0. So , according to
Descartes rule of sign there is a unique positive root say ω0 satisfying Eq.(3.27).
Therefore Eq.(3.21) has a pair of purely imaginary roots represented by ±iω0.

Moreover , by substituting ω0 in Eq.(3.26) and solving the resulting system for
τ , we can have

τ0 =
1

ω0
cos−1 (N2 −N1M1)ω

4
0 + (N3M1 +N1M3 −N2M2)ω

2
0 −N3M3

N2
1ω

4
0 + (N2

2 − 2N1N3)ω2
0 +N2

3
(3.28)

Keeping the above condition in view , we can obtain the following lemma:

Lemma 3.2. : Assume that the conditions (3.23)-(3.25) hold , then when
τ ∈ [0, τ0) all roots of Eq.(3.21) have negative real parts, and when τ = τ0
Eq.(3.21) has a pair of purely imaginary roots ±iω0 while all other roote has
negative real parts.

Next, in the following lemma, we will show the transversal condition of Hopf
bifurcation of system (1.1) near the interior equilibrium point E2 where using
τ as bifurcation parameter.

Lemma 3.3. : Suppose that λ(τ) = α(τ) + iω(τ) is a root of Eq.(3.21) sat-
isfying α(τ0) = 0 and ω(τ0) = ω0. Then the following transversal condition
holds:

sign[
d(Reλ(τ))

dτ
]τ=τ0 > 0, (3.29)

if
M2

2 − 2M1M3 > N2
2 − 2N1N3. (3.30)

Proof. : by using λ(τ) in Eq.(3.21) and differentiating the resulting equation
with respect to τ , we get that

{3λ2 + 2M1λ+M2 + (2N1λ+N2)e
−λτ − τ(N1λ

2 +N2λ+N3)e
−λτ}dλ

dτ

= λ(N1λ
2 +N2λ+N3)e

−λτ . (3.31)
Thus,

(
dλ

dτ
)−1 =

(3λ2 + 2M1λ+M2)e
λτ

(N1λ2 +N2λ+N3)λ
+

2N1λ+N2

(N1λ2 +N2λ+N3)λ
− τ

λ
. (3.32)
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Since for τ = τ0 and λ = iω0, we have
τ

λ
= −i

τ0
ω0

, (3.33)

2N1λ+N2 = N2 + 2iN1ω0, (3.34)
(N1λ

2 +N2λ+N3)λ = −N2ω
2
0 + iω0(N3 −N1ω

2
0), (3.35)

and

(3λ2 + 2M1λ+M2)e
λτ = (M2 − 3ω2

0 + i2M1ω0)(cosω0τ0 + i sinω0τ0)

= [(M2 − 3ω2
0) cosω0τ0 − 2M1ω0 sinω0τ0]

+ i[2M1ω0 cosω0τ0 + (M2 − 3ω2
0) sinω0τ0].

(3.36)
Then

Re[
d(λ(τ))

dτ
]−1
τ=τ0 = Re[

(2N1λ+N2) + (3λ2 + 2M1λ+M2)e
λτ

(N1λ2 +N2λ+N3)λ
− τ

λ
]λ=iω0

=
1

M0
[3ω6

0 + 2(M2
1 −N2

1 − 2M2)ω
4
0 + (M2

2 − 2M1M3 + 2N1N3 −N2
2 )ω

2
0 ]

=
ω2
0

M0
[3ω4

0 + 2h1ω
2
0 + h2].

where M0 = N2
2ω

4
0 + ω2

0(N3 − N1ω
2
0)

2 > 0, h1 = M2
1 − N2

1 − 2M2 and
h2 = M2

2 − 2M1M3 + 2N1N3 −N2
2 . So, we have

sign[
d(Reλ(τ))

dτ
]τ=τ0 = signRe[

d(λ(τ))

dτ
]−1
τ=τ0

= sign[h(ϖ)],

where, h(ϖ) = 3ϖ2+2h1ϖ+h2 and ϖ = ω2
0 > 0. Since h′(ϖ) = 6ϖ+2h1 > 0.

Hence, we obtain that h(ϖ) monotonously increases in [0,+∞). Furthermore,
under condition (3.30), we gain h(0) > 0 and hence h(ω) > 0 for ω > 0.
Consequently, we have the transversal condition (3.29) signifies. This completes
the proof.

□

The transversal condition(3.29) signify that Eq.(3.21) has at least one root
with positive real part for τ ∈ (τ0,∞). Moreover, a Hopf bifurcation occurs
when τ passes through the critical value τ0.
We summarize the above conclusion on the local stability of interior equilib-
rium point E2 and Hopf bifurcation of system (1.1) by the following theorem.

Theorem 3.4. Assume that the conditions (3.23)-(3.25) and (3.30) hold, then:
• E2 is locally asymptotically stable for τ < τ0.
• E2 is unstable for τ > τ0.
• System (1.1) undergoes Hopf bifurcations at E2 for τ = τ0.

where τ0 is defined in equation (3.28).
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4. The Direction and Stability of the Hopf Bifurcation

In the following the direction of the Hopf bifurcations and the stability of
the periodic solutions, which arising through the occurrence of Hopf bifurcation
around the interior equilibrium point of system (1.1) as the delay parameter
passes through the value τ0, are investigated with the help of normal form
theory and center manifold theorem introduced by Hassard in [27].
Accordingly by normalizing the delay τ by scaling t → t

τ and taking Yi(t) =

yi(τt)− y∗i , i = 1, 2, 3 then system(1.1) is transformed to

Ẏ1 = τ [a1(Y2 + y∗2)− a2(Y1 + y∗1)
2 − a3(Y1 + y∗1)− a4(Y1 + y∗1)(Y3 + y∗3)],

Ẏ2 = τ [b1(Y1 + y∗1)− b2(Y2 + y∗2)
2 − (Y2 + y∗2)− b3(Y2 + y∗2)(Y3 + y∗3)],

Ẏ3 = τ [(Y1(t− 1) + y∗1)(Y3(t− 1) + y∗3) + (Y2(t− 1) + y∗2)(Y3(t− 1) + y∗3)

− (Y3 + y∗3)
2 − b4(Y3 + y∗3)].

So by taking τ=τ0 + µ, and linearize the system around (0, 0, 0), we get

Ẏ1 = (τ0 + µ)[c11Y1 + c12Y2 + c13Y3],

Ẏ2 = (τ0 + µ)[c21Y1 + c22Y2 + c23Y3],

Ẏ3 = (τ0 + µ)[R1Y1(t− 1) +R1Y2(t− 1) +R2Y3(t− 1) +R3Y3(t)].

where cij , R1,R2 and R3 are given in Eq.(3.20) with τ0 defined in Eq.(3.28)and
µ ∈ R. Then system(??)is transformed into a functional differential equation
in C = C([−1, 0], R3) as

Ẏ = Lµ(Yt) + F (µ, Yt), (4.1)

here Y (t) = (Y1(t), Y2(t), Y3(t))
T ∈ R3, and Lµ : C → R3 , F : R × C → R3

are given by
Lµ(ϕ) = (τk + µ)[H1ϕ(0) +H2ϕ(−1)],

And

F (µ, ϕ) = (τ0 + µ)

 −a2ϕ
2
1(0)− a4ϕ1(0)ϕ3(0)

−b2ϕ
2
2(0)− b3ϕ2(0)ϕ3(0)

ϕ1(−1)ϕ3(−1) + ϕ2(−1)ϕ3(−1)− ϕ2
3(0)

 ,

where H1 and H2 are defined as

H1 =

 c11 c12 c13
c21 c22 c23
0 0 R3

 , H2 =

 0 0 0

0 0 0

R1 R1 R2

 ,

while ϕ(θ) = (ϕ1(θ), ϕ2(θ), ϕ3(θ))
T ∈ C1([−1, 0], R3).

By the Riesz representation theorem, there exists a matrix η(θ, µ) whose com-
ponents are bounded variation functions such that

Lµ(ϕ) =

∫ 0

−1

dη(θ, µ)ϕ(µ), ϕ ∈ C1([−1, 0], R3).
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In fact we can choose

η(θ, µ) = (τ0 + µ)H1δ(θ)− (τ0 + µ)H2δ(θ + 1),

where δ in the Dirac delta function. Now, we define

A(µ)ϕ =

{
dϕ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1
dη(s, µ)ϕ(s) = Lµ(ϕ), θ = 0.

and

B(µ)ϕ =

{
0, θ ∈ [−1, 0);

F (µ, ϕ), θ = 0.

Thus system (4.1) is equivalent to

Ẏ = A(µ)Yt +B(µ)Yt, (4.2)

where Yt(θ) = Y (t+θ), θ ∈ [−1, 0]. Further for φ(s) = (φ1(s), φ2(s), φ3(s))
T ∈

C1([−1, 0], R3), we define

A∗(µ)φ =

{
−dφ(s)

ds , s ∈ (0, 1],∫ 0

−1
dηT (t, 0)φ(−t), s = 0.

Then we define bilinear inner product by

⟨φ(s), ϕ(θ)⟩ = φ̄T (0)ϕ(0)−
∫ 0

−1

∫ θ

0

φ̄T (ξ − θ)dη(θ)ϕ(ξ)dξ, (4.3)

where η(θ) = η(θ, 0). Then A = A(0) and A∗ = A∗(0) are adjoint operators.
Moreover, for µ = 0 it is clear that ±iω0τ0 are the eigenvalues of A. Thus,
±iω0τ0 are the eigenvalues of A∗. Furthermore the corresponding eigenvectors
are established in the following theorem.

Theorem 4.1. Let q(θ) be the eigenvector of A associated with the eigenvalue
iω0τ0 and q∗(θ) be the eigenvector of A∗ associated with the eigenvalue −iω0τ0.
Then

q(θ) = (1, α1, α2)
T eiθω0τ0 ,

q∗(s) = D(1, α∗
1, α

∗
2)e

isω0τ0 ,

where,

α1 =
(c21c13 − c11c23) + iω0c23
(c12c23 − c22c13) + iω0c13

,

α2 =
R1(1 + α1)e

−iω0τ0

−(R3 +R2eiω0τ0 − iω0)
,

α∗
1 =

(c11 − c12) + iω0

(c22 − c21) + iω0
,

α∗
2 =

c13 + c23α
∗
1

−(R3 +R2eiω0τ0 + iω0)
.
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So that the following quantities hold:

⟨q∗, q⟩ = 1,

⟨q∗, q̄⟩ = 0.

Proof. Suppose that q(θ) = (1, α1, α2)
T eiθω0τ0 is the eigenvector of A(0) cor-

responding to iω0τ0, then

A(0)q(θ) = iω0τ0q(θ).

So, we obtain

A(0)q(0)eiθω0τ0 = iω0τ0q(0)e
iθω0τ0

From the definition of A(0) we have

τ0

 iω0 − c11 −c12 −c13
−c21 iω0 − c22 −c23

−R1e
−iω0τ0 −R1e

−iω0τ0 iω0 −R3 −R2e
−iω0τ0

 1

α1

α2

 =

 0

0

0

 ,

which yields q(0) = (1, α1, α2)
T , where

α1 =
(c21c13 − c11c23) + iω0c23
(c12c23 − c22c13) + iω0c13

,

α2 =
R1(1 + α1)e

−iω0τ0

−(R3 +R2e−iω0τ0 − iω0)
.

On the other hand, suppose that q∗(s) = D(1, α∗
1, α

∗
2)

T eisω0τ0 is the eigenvector
of A∗ corresponding to −iω0τ0, then

A∗q∗(s) = −iω0τ0q
∗(s).

From the definition of A∗ we have

τ0

 iω0 + c11 c21 R1e
iω0τ0

c12 iω0 + c22 R1e
iω0τ0

c13 c23 iω0 +R3 +R2e
iω0τ0

 1

α∗
1

α∗
2

 =

 0

0

0

 ,

which yields

α∗
1 =

(c11 − c12) + iω0

(c22 − c21) + iω0
, α∗

2 =
c13 + c23α

∗
1

−(R3 +R2eiω0τ0 + iω0)
.
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Now to compute the parameter D, and show that ⟨q∗, q⟩ = 1, ⟨q∗, q̄⟩ = 0,
Eq.(4.3) can be used and then we get

⟨q∗, q⟩ = q̄∗
T
(0)q(0)−

∫ 0

θ=−1

∫ θ

ξ=0

q̄∗
T
(ξ − θ)dη(θ)q(ξ)dξ

= D̄(1, ᾱ∗
1, ᾱ

∗
2)(1, α1, α2)

T −
∫ 0

−1

∫ θ

ξ=0

D̄(1, ᾱ∗
1, ᾱ

∗
2)e

−i(ξ−θ)ω0τ0×

dη(θ)(1, α1, α2)
T eiξω0τ0dξ

= D̄{1 + ᾱ∗
1α1 + ᾱ∗

2α2 −
∫ 0

−1

(1, ᾱ∗
1, ᾱ

∗
2)θe

iθω0τ0dη(θ)(1, α1, α2)
T }

= D̄{1 + ᾱ∗
1α1 + ᾱ∗

2α2 + (1, ᾱ∗
1, ᾱ

∗
2)(τkH2e

−iω0τ0)(1, α1, α2)
T }

= D̄{1 + ᾱ∗
1α1 + ᾱ∗

2α2 + τ0ᾱ∗
2(R1 + α1R1 + α2R2)e

−iω0τ0}

Thus, if we take

D̄ = {1 + ᾱ∗
1α1 + ᾱ∗

2α2 + τ0ᾱ∗
2(R1 + α1R1 + α2R2)e

−iω0τ0}−1,

or
D = {1 + α∗

1ᾱ1 + α∗
2ᾱ2 + τ0α

∗
2(R1 + ᾱ1R1 + ᾱ2R2)e

iω0τ0}−1,

Then we obtain ⟨q∗, q⟩ = 1.
Moreover, by using the adjoint property ⟨φ,Aϕ⟩ = ⟨A∗φ, ϕ⟩ it is easy to verify
that

iω0τ0⟨q∗, q̄⟩ = ⟨−iω0τ0q
∗, q̄⟩

= ⟨A∗q∗, q̄⟩
= ⟨q∗, Aq̄⟩
= ⟨q∗, iω0τ0q̄⟩
= −iω0τ0⟨q∗, q̄⟩.

Therefore, we obtain ⟨q∗, q̄⟩ = 0, and the proof is complete.
Keeping the above in view, to study the stability of the periodic solutions those
bifurcates as τ = τ0, we start with computing the coordinate that describes the
center manifold C1 at µ = 0. Let vt = (v1t, v2t, v3t) be the solution of Eq.(4.1)
at µ = 0 and Z(t) = ⟨q∗, vt⟩. Define

W (t, θ) = vt(θ)− Z(t)q(θ)− Z̄(t)q̄(θ) = vt(θ)− 2Re{Z(t)q(θ)}. (4.4)

On the center manifold C1 we have W (t, θ) = W (Z(t), Z̄(t), θ) where

W (Z, Z̄, θ) = W20(θ)
Z2

2
+W11(θ)ZZ̄ +W02(θ)

Z̄2

2
+ . . . (4.5)

Z and Z̄ are local coordinates of center manifold C1 in the direction of q∗ and
q̄∗. Clearly W is real when vt is real. Hence only real solutions are considered.
According to Eq.(4.4) we have

⟨q∗,W ⟩ = ⟨q∗, vt − Zq − Z̄q̄⟩ = ⟨q∗, vt⟩ − Z(t)⟨q∗, q⟩ − Z̄(t)⟨q∗, q̄⟩ = 0.
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Now for a solution vt ∈ C1 of Eq.(22), with µ = 0 and Eq.(25) we have

Ż(t) = ⟨q∗, v̇t⟩ = ⟨q∗, A(0)vt +B(0)vt⟩
= ⟨q∗, A(0)vt⟩+ ⟨q∗, B(0)vt⟩
= ⟨A∗q∗, vt⟩+ ⟨q∗, F (0, vt)⟩
= ⟨A∗q∗, vt⟩+ ⟨q∗, F (0,W (Z, Z̄, 0) + 2Re{Z(t)q(0)})⟩

= iω0τ0⟨q∗, vt⟩+ q̄∗
T
F (0,W (Z, Z̄, 0) + 2Re{Z(t)q(0)})

= iω0τ0Z(t) + q̄∗
T
f0(Z, Z̄). (4.6)

Rewrite the above equation as

Ż(t) = iω0τ0Z(t) + g(Z, Z̄), (4.7)

where

g(Z, Z̄) = q̄∗
T
(0)f0(Z, Z̄) = q̄∗

T
(0)F (0,W (Z, Z̄, 0) + 2Re{Z(t)q(0)})

= g20
Z2

2
+ g11ZZ̄ + g02

Z̄2

2
+ . . . (4.8)

From (4.4), (4.6) and definition of B, the following is obtained

Ẇ = v̇t − Żq − ˙̄Zq̄

= Avt +Bvt − iω0τ0Zq − q̄∗
T
f0(Z, Z̄)q + iω0τ0Z̄q̄ − q∗T f0(Z, Z̄)q̄

= Avt +Bvt −AZq −AZ̄q̄ − 2Re{q̄∗T f0(Z, Z̄)q}

= AW +Bvt − 2Re{q̄∗T f0(Z, Z̄)q}

=

{
AW − 2Re{q̄∗T f0(Z, Z̄)q}, θ ∈ [−1, 0),

AW + f0(Z, Z̄)− 2Re{q̄∗T f0(Z, Z̄)q}, θ = 0.
(4.9)

The above equation can be rewritten as

Ẇ = AW +H(Z, Z̄, θ), (4.10)

where

H(Z, Z̄, θ) = H20(θ)
z2

2
+H11(θ)ZZ̄ +H02(θ)

z̄2

2
+ . . . (4.11)

On the other hand , on C1, we know that

Ẇ = WZŻ +WZ̄
˙̄Z.

Now by using Eq.(4.5) and Eq.(4.7) in the above equation , we get

W = iω0τ0W20(θ)Z
2 − iω0τ0W02(θ)Z̄

2 + ...

This equation , together with Eq.(4.5) and Eq.(4.10) , give that

H(Z, Z̄, θ) = (2iω0τ0−A)W20(θ)
Z2

2
−AW11(θ)ZZ̄−(2iω0τ0+A)W02(θ)

Z̄2

2
+...
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By comparing the coefficients in the last equation with those in Eq.(4.11) , we
obtain

(A− 2iω0τ0)W20(θ) = −H20(θ) (4.12)
AW11(θ) = −H11(θ) (4.13)

(A+ 2iω0τ0)W02(θ) = −H02(θ) (4.14)

Moreover,from (4.8)-(4.10), we have for θ ∈ [−1, 0)

H(Z, Z̄, θ) = −q̄∗
T
(0)f0(Z, Z̄)q(θ)− q∗T (0)f0(Z, Z̄)q̄(θ)

= −g(Z, Z̄)q(θ)− (Z, Z̄)q̄(θ)

= −{g20
Z2

2
+ g11ZZ̄ + g02

Z̄2

2
+ ...}q(θ)

− {ḡ02
Z2

2
+ ḡ11ZZ̄ + ḡ20

Z̄2

2
+ ...}q̄(θ).

Again comparing the coefficients with those in Eq.(4.11), gives that

H20(θ) = −g20q(θ)− ḡ02q̄(θ), (4.15)

H11(θ) = −g11q(θ)− ḡ11q̄(θ), (4.16)
H02(θ) = −g02q(θ)− ḡ20q̄(θ). (4.17)

Therefore using definition of A together with (4.12) and (4.15) gives that

Ẇ20(θ) = AW20(θ) = 2iω0τ0W20(θ)−H20(θ)

= 2iω0τ0W20(θ) + g20q(θ) + ḡ02q̄(θ)

= 2iω0τ0W20(θ) + g20q(0)e
iω0τ0θ + ḡ02q̄(0)e

−iω0τ0θ.

Solving the above equation for W20(θ) gives

W20(θ) =
ig20
ω0τ0

q(0)eiω0τ0θ +
iḡ02
3ω0τ0

q̄(0)e−iω0τ0θ + E1e
2iω0τ0θ. (4.18)

Similarly, Eq.(4.13) and (4.16)give that

Ẇ11(θ) = AW11(θ) = g11q(0)e
iω0τ0θ + ḡ11q(0)e

−iω0τ0θ,

and then we obtain

W11(θ) = − ig11
ω0τ0

q(0)eiω0τ0θ +
iḡ11
ω0τ0

¯q(0)e−iω0τ0θ + E2, (4.19)

where E1, E2 are both three dimensional arbitrary constant vectors and can be
found by setting θ = 0 in H(Z, Z̄, θ).

Now in view of Eq.(4.7), we have v1(t+ θ)

v2(t+ θ)

v3(t+ θ)

 = Z

 1

α1

α2

 eiω0τ0θ+Z̄

 1

ᾱ1

ᾱ2

 e−iω0τ0θ+

 W (1)(Z, Z̄, θ)

W (2)(Z, Z̄, θ)

W (3)(Z, Z̄, θ)

 .
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Thus , we can get that

ν1t = Zeiω0τ0θ + Z̄e−iω0τ0θ +W
(1)
20

Z2

2
+W

(1)
11 ZZ̄ +W

(1)
02

Z2

2
+ ...,

ν2t = Zα1e
iω0τ0θ + Z̄ᾱ1e

−iω0τ0θ +W
(2)
20

Z2

2
+W

(2)
11 ZZ̄ +W

(2)
02

Z2

2
+ ...,

and

ν3t = Zα2e
iω0τ0θ + Z̄ᾱ2e

−iω0τ0θ +W
(3)
20

Z2

2
+W

(3)
11 ZZ̄ +W

(3)
02

Z2

2
+ ... .

Hance it is easy to verify that

ϕ1(0) =Z + Z̄ +W
(1)
20 (0)

Z2

2
+W

(1)
11 (0)ZZ̄ +W

(1)
02 (0)

Z2

2
+ ...,

ϕ2(0) =Zα1 + Z̄ᾱ1 +W
(2)
20 (0)

Z2

2
+W 2

11(0)ZZ̄ +W
(2)
02 (0)

Z2

2
+ ...,

ϕ3(0) =Zα2 + Z̄ᾱ2 +W
(3)
20 (0)

Z2

2
+W

(3)
11 (0)ZZ̄ +W

(3)
02 (0)

Z2

2
+ ...,

ϕ1(−1) =Ze−iω0τ0 + Z̄eiω0τ0 +W
(1)
20 (−1)

Z2

2
+W

(−1)
11 ZZ̄ +W

(1)
02 (−1)

Z2

2
+ ...,

ϕ2(−1) =Zα1e
−iω0τ0 + Z̄ᾱ1e

iω0τ0 +W
(2)
20 (−1)

Z2

2
+W

(2)
11 (−1)ZZ̄

+W
(2)
02 (−1)

Z2

2
+ ...,

ϕ3(−1) =Zα2e
−iω0τ0 + Z̄ᾱ2e

iω0τ0 +W
(3)
20 (−1)

Z2

2
+W

(3)
11 (−1)ZZ̄

+W
(3)
02 (−1)

Z2

2
+ ...,

ϕ2
1(0) =Z2 + 2ZZ̄ + Z̄2 + [W

(1)
20 (0) + 2W

(1)
11 (0)]Z2Z̄ + ...,

ϕ2
2(0) =Z2α2

1 + 2α1ᾱ1ZZ̄ + Z̄2ᾱ2
1 + [ᾱ1W

(2)
20 (0) + 2α1W

(2)
11 (0)]Z2Z̄ + ...,

ϕ2
3(0) =Z2α2

2 + 2α2ᾱ2ZZ̄ + Z̄2ᾱ2
2 + [ᾱ2W

(2)
20 (0) + 2α2W

(2)
11 (0)]Z2Z̄ + ...,

ϕ1(0)ϕ3(0) =Z2α2 + (α2 + ᾱ2)ZZ̄ + Z̄2ᾱ2 + [α2W
(1)
11 (0) +

1

2
ᾱ2W

(1)
20 (0)

+
1

2
W 3

20(0) +W 3
11(0)]Z

2Z̄ + ...,

ϕ2(0)ϕ3(0) =Z2α1α2 + (α2ᾱ1 + α1ᾱ2)ZZ̄ + Z̄2ᾱ1ᾱ2 + [α2W
(2)
11 (0)

+
1

2
ᾱ2W

(2)
20 (0) + α1W

3
11(0) +

1

2
ᾱ1W

3
20(0)]Z

2Z̄ + ...,

ϕ1(−1)ϕ3(−1) = Z2α2e
−i2ω0τ0 + (α2 + ᾱ2)ZZ̄ + Z̄2ᾱ2e

i2ω0τ0

+ [α2W
(1)
11 (−1)e−iω0τ0 +

1

2
ᾱ2W

(1)
20 (−1)eiω0τ0

+W 3
11(−1)e−iω0τ0 +

1

2
W 3

20(−1)eiω0τ0 ]Z2Z̄ + ...,
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ϕ2(−1)ϕ3(−1) = Z2α1α2e
−i2ω0τ0 + ZZ̄α2ᾱ2 + Z̄2ᾱ1ᾱ2e

i2ω0τ0

+ [α2W
(2)
11 (−1)e−iω0τ0 +

1

2
ᾱ2W

(2)
20 (−1)eiω0τ0

+ α1W
3
11(−1)e−iω0τ0 +

1

2
ᾱ1W

3
20(−1)eiω0τ0 ]Z2Z̄ + ...,

Therefore the function f0 can be expressed as

f0(Z, Z̄) = τ0

 P1Z
2 + P2ZZ̄ + P3Z̄

2 + P4Z
2Z̄

P5Z
2 + P6ZZ̄ + P7Z̄

2 + P8Z
2Z̄

P9Z
2 + P10ZZ̄ + P11Z̄

2 + P12Z
2Z̄


where

P1 = −(a2 + a4α2), P2 = −[2a2 + (α2 + ᾱ2)a4], P3 = −(a2 + a4ᾱ2),

P4 = −[(α2 +
1

2
ᾱ2a4)W

1
20(0) + (2a2 + α2a4)W

1
11(0) + a4W

3
11(0) +

1

2
a4W

3
20(0)],

P5 = −(α2
1b2+α1α2b3), P6 = −2α1ᾱ1b2−(α2ᾱ1+α1ᾱ2)b3, P7 = −(ᾱ2

1b2+ᾱ1ᾱ2b3),

P8 = −[(2α1b2+α2b3)W
2
11(0)+α1b3W

3
11(0)+(ᾱ1b2+

1

2
ᾱ2b3)W

2
20(0)+

1

2
ᾱ1b3W

3
20(0)],

P9 = (α2+α1α2)e
−i2ω0τ0−α2

2, P10 = (α2+ᾱ2+α1ᾱ2+α2ᾱ1−2α2ᾱ2), P11 = −ᾱ2
2

+(ᾱ2+ᾱ1ᾱ2)e
i2ω0τ0 , P12 = [(W 1

11(−1)+W 2
11(−1))α2e

−iω0τ0+(α1+1)W 3
11(−1)e−iω0τ0

+
1

2
(W 1

20(−1)+W 2
20(−1))ᾱ2e

iω0τ0+
1

2
(ᾱ1+1)W 3

20(−1)eiω0τ0−ᾱ2W
2
20(0)−2α2W

2
11(0)].

Note that since q∗
T
(0) = D̄(1, α∗

1, α
∗
2),

Then we get

g(Z, Z̄) = q∗
T
(0)f0(Z, Z̄)

= τ0D̄[(P1 + α∗
1P5 + α∗

2P9)Z
2 + (P2 + α∗

1P6 + α∗
2P10)ZZ

+ (P3 + α∗
1P7 + α∗

2P11Z̄
2) + (P4 + α∗

1P8 + α∗
2P12)Z

2Z̄].

Comparing the coefficients in the above equation with those of Eq.(4.8), we
obtain

g20 = 2τ0D̄(P1 + α∗
1P5 + α∗

2P9), (4.20)
g11 = τ0D̄(P2 + α∗

1P6 + α∗
2P10), (4.21)

g02 = 2τ0D̄(P3 + α∗
1P7 + α∗

2P11), (4.22)
g21 = 2τ0D̄(P4 + α∗

1P8 + α∗
2P12). (4.23)

Now in order to evaluate gij we need to compute W20 and W11. From (4.10)
with θ = 0, we have

H(Z, Z̄, 0) = −2Re{q∗T f0(Z, Z̄)q}+ f0(Z, Z̄)

= −{g20
Z2

2
+ g11ZZ̄ + g02

Z̄2

2
+ ...}q(0)

− {ḡ02
Z2

2
+ ḡ11ZZ̄ + ḡ20

Z̄2

2
+ ...}ḡ(0) + f0(Z, Z̄).
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Comparing the coefficients here with those in Eq.(4.11) , it shows that

H20(0) = −g20q(0)− ḡ02q̄(0) + 2τ0

 P1

P5

P9

 , (4.24)

H11(0) = −g11q(0)− ḡ11q̄(0) + τ0

 P2

P6

P10

 , (4.25)

H02(0) = −g02q(0)− ḡ20q̄(0) + 2τ0

 P3

P7

P11

 . (4.26)

According to the definition of A(0),together with Eq.(4.18) and Eq.(4.19), we
obtain ∫ 0

−1

dη(θ)W20(θ) = 2iω0τ0W20(0)−H20(0), (4.27)∫ 0

−1

dη(θ)W11(θ) = −H11(0). (4.28)

Since Aq(0) = iω0τ0q(0) and q(θ) = q(0)eiθω0τ0 , we obtain∫ 0

−1

dη(θ)q(0)eiθω0τ0 = iω0τ0q(0),∫ 0

−1

dη(θ)q̄(0)e−iθω0τ0 = −iω0τ0q̄(0).

Therefore

(iω0τ0I −
∫ 0

−1

dη(θ)eiθω0τ0)q(0) = 0, (4.29)

and

(−iω0τ0I −
∫ 0

−1

dη(θ)e−iθω0τ0)q̄(0) = 0. (4.30)

Substituting (4.18) and (4.24) into (4.27) and using (4.29), we obtain that

(i2ω0τ0I −
∫ 0

−1

dη(θ)e2iθω0τ0)E1 = 2τ0

 P1

P5

P9

 ,

which gives i2ω0 − c11 −c12 −c13
−c21 i2ω0 − c22 −c23

−R1e
−2iθω0τ0 −R1e

−2iθω0τ0 i2ω0 −R2e
−2iθω0τ0 −R3


 E

(1)
1

E
(2)
1

E
(3)
1

 = 2

 P1

P5

P9

 ,
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Thus, after solving the above equation and letting

∆1 =

∣∣∣∣∣∣
i2ω0 − c11 −c12 −c13

−c21 i2ω0 − c22 −c23
−R1e

−2iθω0τ0 −R1e
−2iθω0τ0 i2ω0 −R2e

−2iθω0τ0 −R3

∣∣∣∣∣∣
we obtain that

E
(1)
1 =

2

∆1

∣∣∣∣∣∣
P1 −c12 −c13
P5 i2ω0 − c22 −c23
P9 −R1e

−2iθω0τ0 2iω0 −R2e
−2iθω0τ0 −R3

∣∣∣∣∣∣
E

(2)
1 =

2

∆1

∣∣∣∣∣∣
i2ω0τ0 − c11 P1 −c13

−c21 P5 −c23
−R1e

−2iθω0τ0 P9 i2ω0τ0 −R2e
−2iθω0τ0 −R3

∣∣∣∣∣∣
E

(3)
1 =

2

∆1

∣∣∣∣∣∣
i2ω0τ0 − c11 −c12 P1

−c21 i2ω0 − c22 P5

−R1e
−2iθω0τ0 R1e

−2iθω0τ0 P9

∣∣∣∣∣∣
By similar discussion, substituting (4.18) and (4.25) into (4.28) and applying

(4.30), one can obtain

(

∫ 0

−1

dη(θ))E2 = −τ0

 P2

P6

P10


That is  −c11 −c12 −c13

−c21 −c22 −c23
−R1 −R1 −R2 −R3


 E

(1)
2

E
(2)
2

E
(3)
2

 = 2

 P2

P6

P10

 ,

Hance, we obtain

E
(1)
2 =

1

∆2

∣∣∣∣∣∣
P2 −c12 −c13
P6 −c22 −c23
P10 −R1 −R2 −R3

∣∣∣∣∣∣
E

(2)
2 =

1

∆2

∣∣∣∣∣∣
−c11 P2 −c13
−c21 P6 −c23
−R1 P10 −R2 −R3

∣∣∣∣∣∣
E

(3)
2 =

1

∆2

∣∣∣∣∣∣
−c11 −c12 P2

−c21 −c22 P6

−R1 −R1 P10

∣∣∣∣∣∣
where

∆2 =

∣∣∣∣∣∣
−c11 −c12 −c13
−c21 −c22 −c23
−R1 −R1 −R2 −R3

∣∣∣∣∣∣
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Therefore, it is easy to verify that W20 and W11 can be determined using
Eq.(4.18) and Eq.(4.19) respectively and hence we can evaluate all gij with the
help of (4.20) - (4.23).Consequently, we can calculate the following quantities:

C1(0) =
i

2ω0τ0
(g20g11 − 2|g11|2 −

1

3
|g02|2) +

g21
2

,

µ2 = −Re{C1(0)}
Re{λ′(τ0)}

(4.31)

β2 = 2Re{C1(0)},

T2 = −Im{C1(0)}+ µ2Im{λ′
(τ0)}

ω0τ0
.

which determine respectively the quantities of bifurcating periodic solutions in
the center manifold at the critical value τ0; While µ2 determines the direction
of the Hopf bifurcation so that for µ2 > 0(µ2 < 0) the Hopf bifurcation is
supercritical (subcritical); Further β2 determines the stability of the bifurcating
periodic solutions so that the periodic solutions are stable (unstable) when
β2 < 0(β2 > 0) ; Finally T2 determines the period of the bifurcating solutions
so that the periodic increase (decrease) if T2 > 0(T2 < 0). then we have the
following theorem.

Theorem 4.2. Assume that the conditions (3.25) and (3.30)hold. then, sys-
tem (1.1)undergoes a stable supercritical Hopf bifurcation as τ crosses τ0
if Re{C1(0)} < 0, white it has unstable subcritical Hopf bifurcation when
Re{C0(0)} > 0.

5. Numerical Analysis

In this section , numerical simulation of system (1.1) is applied to confirm
our obtained analytical results in the above sections for the following set of
biologically feasible hypothetical parameter values
S1 = {a1, a2, a3, a4, b1, b2, b3, b4 = 3, 0.1, 0.4, 0.5, 0.4, 0.1, 0.5, 0.2}.
System (1.1) is solved numerically with the help of Matlab software . It is ob-
served that for the parameter set given by S1 with τ = 0 system (1.1) has a glob-
ally asymptotically stable interior equilibrium point E2 = (0.7483, 0.2135, 0.7618)

starting from different sets of initial values as show in Fig. (1) . Straight for-
ward computation shows that , for the parameters values given by S1, Eq.(3.22)
has three roots (eigenvalues) with negative real parts.
Moreover, for τ > 0 with set of data S1, it is easy to verify that the coeffi-
cient of Eq. (3.26) is given by h1 = 7.3388 > 0 and h3 = −0.4713 < 0, and
hence Eq. (3.26) has a unique positive root given by ω0 = 0.2064. Therefore
the characteristic equation (3.21) has a unique pair of purely imaginary roots
ω0 = 0.2063 with τ0 = 5.5428. Consequently, due to theorem (4), the interior
equilibrium point E2 is locally asymptotically stable for τ < τ0 , as shown in
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Figure 1. Trajectories of system (1) approach asymptotically
to the interior equilibrium point E2 = (0.7484, 0.2135, 0.7618)

for data given by S1 and τ = 0 starting from different initial
values.

the typical figure given by Fig (2) for τ = 4.5 , while E2 is unstable point for
τ > τ0 as shown in the typical figure given by Fig (3) for τ = 6.5 and Fig (4)
for τ = 20 . Obviously, the obtained numerical trajectories of system (1.1) rep-
resented in Fig (2), Fig (3) and Fig (4) confirm our obtained analytical result
given by theorem 4. Indeed the trajectory represented by Fig (3) for τ = 6.5

approaches asymptotically to periodic attractor and the period becomes larger
with τ increases as shown in Fig (4) for τ = 20 which insures of having a
Hopf bifurcation. This confirms our obtained analytical results in lemma 2 and
theorem 4 for which we have h(0) = 10.7546 > 0 and h(ω2

0) = 13.9106 > 0

that indicates to satisfying of transversal condition of Hopf bifurcation. On the
other hand, substituting the values in S1 with the value of ω0 and τ0 in Eq.
(4.31) gives that C1 = −0.2318−1.4311i, β2 = −0.4637 < 0, µ2 = 117.4314 > 0

and T2 = 1.9203 > 0.Therefore due to theorem 6 system (1.1) for τ > τ0 under-
goes a stable supercritical Hopf bifurcation, which is clearly shown in Fig(3)
and Fig(4). Finally increasing the value of τ further leads to losing of the
stability of periodic dynamics and the trajectory of system (1.1) approaches
asymptotically to chaotic attractor as shown in Fig (5) for τ = 60.5.
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Figure 2. Trajectories of system (1.1) approach
asymptotically to the interior equilibrium point E2 =

(0.7484, 0.2135, 0.7618) for data given by S1 and τ = 4.5.
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Figure 3. Trajectories of system (1.1) approach asymptoti-
cally to the periodic dynamic for data given by S1 and τ = 6.5.
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6. Discussion and Conclusions

In this paper, we imposed a delay factor in the gestation of predator on the
stage-structure prey-predator model given by [16]. Our purpose is to under-
stand the effect of delay on the stability of the model. Stability analysis shows
that the existence of discrete time delay does not effect on the stability of the
boundary equilibrium points E0 and E1. However it is working as a destabi-
lizing factor of the system around the interior equilibrium point, so that the
system still approaches asymptotically to the interior equilibrium point for the
value of τ less than the critical value τ0 . However the system loses its stability
at E2 and the trajectory approaches asymptotically to the periodic dynamics
for τ > τ0 , which indicates to occurrence of Hopf bifurcation at E2 for τ = τ0.
Finally, it is observed that increasing the value of τ further leads to losing
the stability of the periodic dynamics too and the trajectory of system (1.1)
approaches asymptotically to chaotic attractor.
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Figure 4. Trajectories of system (1.1) approach asymptoti-
cally to the periodic dynamic for data given by S1 and τ = 20.
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Figure 5. Strange attractor of system (1.1) for data given by
S1 with τ = 60.5.
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